Exercise 7.8.1

Consider the Riccati equation $y^{\prime}=y^{2}-y-2$. A particular solution to this equation is $y=2$. Find a more general solution.

Solution

Since one solution is known, the Riccati equation can be transformed into a Bernoulli equation by making the substitution $y=2+u$. Differentiating both sides of the substitution with respect to x gives $y^{\prime}=u^{\prime}$.

$$
y^{\prime}=y^{2}-y-2 \quad \rightarrow \quad u^{\prime}=(2+u)^{2}-(2+u)-2 \quad \rightarrow \quad u^{\prime}=u^{2}+3 u
$$

Bring $3 u$ to the left side.

$$
u^{\prime}-3 u=u^{2}
$$

Divide both sides by u^{2}.

$$
u^{-2} u^{\prime}-3 u^{-1}=1
$$

Make the substitution $p=u^{-1}$. Then $p^{\prime}=-u^{-2} u^{\prime}$ by the chain rule.

$$
-p^{\prime}-3 p=1
$$

Multiply both sides by -1 .

$$
p^{\prime}+3 p=-1
$$

This is a first-order linear ODE that can be solved by multiplying both sides by an integrating factor I.

$$
I=\exp \left(\int^{x} 3 d s\right)=e^{3 x}
$$

Proceed with the multiplication.

$$
e^{3 x} p^{\prime}+3 e^{3 x} p=-e^{3 x}
$$

The left side can be written as $d / d x(I p)$ by the product rule.

$$
\frac{d}{d x}\left(e^{3 x} p\right)=-e^{3 x}
$$

Integrate both sides with respect to x.

$$
e^{3 x} p=-\frac{1}{3} e^{3 x}+C
$$

Divide both sides by $e^{3 x}$.

$$
p(x)=-\frac{1}{3}+C e^{-3 x}
$$

Now that the ODE is solved, change back to u.

$$
u^{-1}=-\frac{1}{3}+C e^{-3 x}
$$

Invert both sides.

$$
u(x)=\frac{1}{-\frac{1}{3}+C e^{-3 x}} \cdot \frac{3 e^{3 x}}{3 e^{3 x}}=\frac{3 e^{3 x}}{3 C-e^{3 x}}
$$

Therefore, since $y=2+u$,

$$
y(x)=2+\frac{3 e^{3 x}}{3 C-e^{3 x}} .
$$

